
datascience Documentation
Release 0.7.1

John DeNero, David Culler, Alvin Wan, and Sam Lau

September 14, 2016

Contents

1 Start Here: datascience Tutorial 3
1.1 Getting Started . 3
1.2 Creating a Table . 4
1.3 Accessing Values . 5
1.4 Manipulating Data . 6
1.5 Visualizing Data . 9
1.6 Exporting . 14
1.7 An Example . 14
1.8 Drawing Maps . 19

2 Reference 21
2.1 Tables (datascience.tables) . 21
2.2 Maps (datascience.maps) . 45
2.3 Formats (datascience.formats) . 47
2.4 Utility Functions (datascience.util) . 48

Python Module Index 51

i

ii

datascience Documentation, Release 0.7.1

Release 0.7.1

Date September 14, 2016

The datascience package was written for use in Berkeley’s DS 8 course and contains useful functionality for
investigating and graphically displaying data.

Contents 1

datascience Documentation, Release 0.7.1

2 Contents

CHAPTER 1

Start Here: datascience Tutorial

This is a brief introduction to the functionality in datascience. For a complete reference guide, please see Tables
(datascience.tables).

For other useful tutorials and examples, see:

• The textbook introduction to Tables

• Example notebooks

Table of Contents

• Getting Started
• Creating a Table
• Accessing Values
• Manipulating Data
• Visualizing Data
• Exporting
• An Example
• Drawing Maps

1.1 Getting Started

The most important functionality in the package is is the Table class, which is the structure used to represent columns
of data. First, load the class:

In [1]: from datascience import Table

In the IPython notebook, type Table. followed by the TAB-key to see a list of members.

Note that for the Data Science 8 class we also import additional packages and settings for all assignments and labs.
This is so that plots and other available packages mirror the ones in the textbook more closely. The exact code we use
is:

HIDDEN

import matplotlib
matplotlib.use('Agg')
from datascience import Table
%matplotlib inline
import matplotlib.pyplot as plt

3

http://www.inferentialthinking.com/chapter1/tables.html
https://github.com/deculler/TableDemos

datascience Documentation, Release 0.7.1

import numpy as np
plt.style.use('fivethirtyeight')

In particular, the lines involving matplotlib allow for plotting within the IPython notebook.

1.2 Creating a Table

A Table is a sequence of labeled columns of data.

A Table can be constructed from scratch by extending an empty table with columns.

In [2]: t = Table().with_columns([
...: 'letter', ['a', 'b', 'c', 'z'],
...: 'count', [9, 3, 3, 1],
...: 'points', [1, 2, 2, 10],
...:])
...:

In [3]: print(t)
letter | count | points
a | 9 | 1
b | 3 | 2
c | 3 | 2
z | 1 | 10

More often, a table is read from a CSV file (or an Excel spreadsheet). Here’s the content of an example file:

In [4]: cat sample.csv
x,y,z
1,10,100
2,11,101
3,12,102

And this is how we load it in as a Table using read_table():

In [5]: Table.read_table('sample.csv')
Out[5]:
x | y | z
1 | 10 | 100
2 | 11 | 101
3 | 12 | 102

CSVs from URLs are also valid inputs to read_table():

In [6]: Table.read_table('http://data8.org/textbook/notebooks/sat2014.csv')
Out[6]:
State | Participation Rate | Critical Reading | Math | Writing | Combined
North Dakota | 2.3 | 612 | 620 | 584 | 1816
Illinois | 4.6 | 599 | 616 | 587 | 1802
Iowa | 3.1 | 605 | 611 | 578 | 1794
South Dakota | 2.9 | 604 | 609 | 579 | 1792
Minnesota | 5.9 | 598 | 610 | 578 | 1786
Michigan | 3.8 | 593 | 610 | 581 | 1784
Wisconsin | 3.9 | 596 | 608 | 578 | 1782
Missouri | 4.2 | 595 | 597 | 579 | 1771
Wyoming | 3.3 | 590 | 599 | 573 | 1762

4 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

Kansas | 5.3 | 591 | 596 | 566 | 1753
... (41 rows omitted)

It’s also possible to add columns from a dictionary, but this option is discouraged because dictionaries do not preserve
column order.

In [7]: t = Table().with_columns({
...: 'letter': ['a', 'b', 'c', 'z'],
...: 'count': [9, 3, 3, 1],
...: 'points': [1, 2, 2, 10],
...: })
...:

In [8]: print(t)
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

1.3 Accessing Values

To access values of columns in the table, use column(), which takes a column label or index and returns an array.
Alternatively, columns() returns a list of columns (arrays).

In [9]: t
Out[9]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [10]: t.column('letter')
\\\Out[10]:
array(['a', 'b', 'c', 'z'],

dtype='<U1')

In [11]: t.column(1)
\\\Out[11]: array([1, 2, 2, 10])

You can use bracket notation as a shorthand for this method:

In [12]: t['letter'] # This is a shorthand for t.column('letter')
Out[12]:
array(['a', 'b', 'c', 'z'],

dtype='<U1')

In [13]: t[1] # This is a shorthand for t.column(1)
\\Out[13]: array([1, 2, 2, 10])

To access values by row, row() returns a row by index. Alternatively, rows() returns an list-like Rows object that
contains tuple-like Row objects.

1.3. Accessing Values 5

datascience Documentation, Release 0.7.1

In [14]: t.rows
Out[14]:
Rows(count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z)

In [15]: t.rows[0]
\\Out[15]: Row(count=9, points=1, letter='a')

In [16]: t.row(0)
\\Out[16]: Row(count=9, points=1, letter='a')

In [17]: second = t.rows[1]

In [18]: second
Out[18]: Row(count=3, points=2, letter='b')

In [19]: second[0]
\\Out[19]: 3

In [20]: second[1]
\\\Out[20]: 2

To get the number of rows, use num_rows.

In [21]: t.num_rows
Out[21]: 4

1.4 Manipulating Data

Here are some of the most common operations on data. For the rest, see the reference (Tables (datascience.tables)).

Adding a column with with_column():

In [22]: t
Out[22]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [23]: t.with_column('vowel?', ['yes', 'no', 'no', 'no'])
\\Out[23]:
count | points | letter | vowel?
9 | 1 | a | yes
3 | 2 | b | no
3 | 2 | c | no
1 | 10 | z | no

In [24]: t # .with_column returns a new table without modifying the original
\\Out[24]:
count | points | letter
9 | 1 | a
3 | 2 | b

6 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

3 | 2 | c
1 | 10 | z

In [25]: t.with_column('2 * count', t['count'] * 2) # A simple way to operate on columns
\\Out[25]:
count | points | letter | 2 * count
9 | 1 | a | 18
3 | 2 | b | 6
3 | 2 | c | 6
1 | 10 | z | 2

Selecting columns with select():

In [26]: t.select('letter')
Out[26]:
letter
a
b
c
z

In [27]: t.select(['letter', 'points'])
\\\\\\\\\\\\\\\\\\\\\\\\\Out[27]:
letter | points
a | 1
b | 2
c | 2
z | 10

Renaming columns with relabeled():

In [28]: t
Out[28]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [29]: t.relabeled('points', 'other name')
\\Out[29]:
count | other name | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [30]: t
\\Out[30]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [31]: t.relabeled(['letter', 'count', 'points'], ['x', 'y', 'z'])
\\Out[31]:
y | z | x
9 | 1 | a

1.4. Manipulating Data 7

datascience Documentation, Release 0.7.1

3 | 2 | b
3 | 2 | c
1 | 10 | z

Selecting out rows by index with take() and conditionally with where():

In [32]: t
Out[32]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [33]: t.take(2) # the third row
\\Out[33]:
count | points | letter
3 | 2 | c

In [34]: t.take[0:2] # the first and second rows
\\\Out[34]:
count | points | letter
9 | 1 | a
3 | 2 | b

In [35]: t.where('points', 2) # rows where points == 2
Out[35]:
count | points | letter
3 | 2 | b
3 | 2 | c

In [36]: t.where(t['count'] < 8) # rows where count < 8
\\Out[36]:
count | points | letter
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [37]: t['count'] < 8 # .where actually takes in an array of booleans
\\\Out[37]: array([False, True, True, True], dtype=bool)

In [38]: t.where([False, True, True, True]) # same as the last line
\\Out[38]:
count | points | letter
3 | 2 | b
3 | 2 | c
1 | 10 | z

Operate on table data with sort(), group(), and pivot()

In [39]: t
Out[39]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [40]: t.sort('count')

8 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

\\Out[40]:
count | points | letter
1 | 10 | z
3 | 2 | b
3 | 2 | c
9 | 1 | a

In [41]: t.sort('letter', descending = True)
\\Out[41]:
count | points | letter
1 | 10 | z
3 | 2 | c
3 | 2 | b
9 | 1 | a

You may pass a reducing function into the collect arg
Note the renaming of the points column because of the collect arg
In [42]: t.select(['count', 'points']).group('count', collect=sum)
Out[42]:
count | points sum
1 | 10
3 | 4
9 | 1

In [43]: other_table = Table().with_columns([
....: 'mar_status', ['married', 'married', 'partner', 'partner', 'married'],
....: 'empl_status', ['Working as paid', 'Working as paid', 'Not working',
....: 'Not working', 'Not working'],
....: 'count', [1, 1, 1, 1, 1]])
....:

In [44]: other_table
Out[44]:
mar_status | empl_status | count
married | Working as paid | 1
married | Working as paid | 1
partner | Not working | 1
partner | Not working | 1
married | Not working | 1

In [45]: other_table.pivot('mar_status', 'empl_status', 'count', collect=sum)
\\Out[45]:
empl_status | married | partner
Not working | 1 | 2
Working as paid | 2 | 0

1.5 Visualizing Data

We’ll start with some data drawn at random from two normal distributions:

In [46]: normal_data = Table().with_columns([
....: 'data1', np.random.normal(loc = 1, scale = 2, size = 100),
....: 'data2', np.random.normal(loc = 4, scale = 3, size = 100)])
....:

In [47]: normal_data

1.5. Visualizing Data 9

datascience Documentation, Release 0.7.1

Out[47]:
data1 | data2
1.76746 | 1.44775
0.873177 | 0.0103384
-0.318343 | 1.29415
2.83069 | 5.75398
1.61876 | 5.67076
4.36736 | 0.114547
2.32345 | 4.66578
1.22448 | 1.61017
-0.871735 | 4.98542
1.63858 | 6.86354
... (90 rows omitted)

Draw histograms with hist():

In [48]: normal_data.hist()

_build/latex/_images/hist.png

In [49]: normal_data.hist(bins = range(-5, 10))

10 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

_build/latex/_images/hist_binned.png

In [50]: normal_data.hist(bins = range(-5, 10), overlay = True)

_build/latex/_images/hist_overlay.png

If we treat the normal_data table as a set of x-y points, we can plot() and scatter():

1.5. Visualizing Data 11

datascience Documentation, Release 0.7.1

In [51]: normal_data.sort('data1').plot('data1') # Sort first to make plot nicer

_build/latex/_images/plot.png

In [52]: normal_data.scatter('data1')

_build/latex/_images/scatter.png

12 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

In [53]: normal_data.scatter('data1', fit_line = True)

_build/latex/_images/scatter_line.png

Use barh() to display categorical data.

In [54]: t
Out[54]:
count | points | letter
9 | 1 | a
3 | 2 | b
3 | 2 | c
1 | 10 | z

In [55]: t.barh('letter')

1.5. Visualizing Data 13

datascience Documentation, Release 0.7.1

_build/latex/_images/barh.png

1.6 Exporting

Exporting to CSV is the most common operation and can be done by first converting to a pandas dataframe with
to_df():

In [56]: normal_data
Out[56]:
data1 | data2
1.76746 | 1.44775
0.873177 | 0.0103384
-0.318343 | 1.29415
2.83069 | 5.75398
1.61876 | 5.67076
4.36736 | 0.114547
2.32345 | 4.66578
1.22448 | 1.61017
-0.871735 | 4.98542
1.63858 | 6.86354
... (90 rows omitted)

index = False prevents row numbers from appearing in the resulting CSV
In [57]: normal_data.to_df().to_csv('normal_data.csv', index = False)

1.7 An Example

We’ll recreate the steps in Chapter 3 of the textbook to see if there is a significant difference in birth weights between
smokers and non-smokers using a bootstrap test.

14 Chapter 1. Start Here: datascience Tutorial

http://data8.org/text/3_inference.html#Using-the-Bootstrap-Method-to-Test-Hypotheses

datascience Documentation, Release 0.7.1

For more examples, check out the TableDemos repo.

From the text:

The table baby contains data on a random sample of 1,174 mothers and their newborn babies. The col-
umn birthwt contains the birth weight of the baby, in ounces; gest_days is the number of gestational
days, that is, the number of days the baby was in the womb. There is also data on maternal age, maternal
height, maternal pregnancy weight, and whether or not the mother was a smoker.

In [58]: baby = Table.read_table('http://data8.org/textbook/notebooks/baby.csv')

In [59]: baby # Let's take a peek at the table
Out[59]:
Birth Weight | Gestational Days | Maternal Age | Maternal Height | Maternal Pregnancy Weight | Maternal Smoker
120 | 284 | 27 | 62 | 100 | False
113 | 282 | 33 | 64 | 135 | False
128 | 279 | 28 | 64 | 115 | True
108 | 282 | 23 | 67 | 125 | True
136 | 286 | 25 | 62 | 93 | False
138 | 244 | 33 | 62 | 178 | False
132 | 245 | 23 | 65 | 140 | False
120 | 289 | 25 | 62 | 125 | False
143 | 299 | 30 | 66 | 136 | True
140 | 351 | 27 | 68 | 120 | False
... (1164 rows omitted)

Select out columns we want.
In [60]: smoker_and_wt = baby.select(['m_smoker', 'birthwt'])
\\---
KeyError Traceback (most recent call last)
<ipython-input-60-98d2eeccb488> in <module>()
----> 1 smoker_and_wt = baby.select(['m_smoker', 'birthwt'])

../datascience/tables.py in select(self, *column_label_or_labels)
589 table = Table()
590 for label in labels:

--> 591 self._add_column_and_format(table, label, np.copy(self[label]))
592 return table
593

../datascience/tables.py in __getitem__(self, index_or_label)
168 def __getitem__(self, index_or_label):
169 label = self._as_label(index_or_label)

--> 170 return self.column(label)
171
172 def __setitem__(self, label, values):

../datascience/tables.py in column(self, index_or_label)
266 An instance of ``numpy.array``.
267 """

--> 268 return self._columns[self._as_label(index_or_label)]
269
270 @property

KeyError: 'm_smoker'

In [61]: smoker_and_wt
\\\---
NameError Traceback (most recent call last)

1.7. An Example 15

https://github.com/deculler/TableDemos

datascience Documentation, Release 0.7.1

<ipython-input-61-1c8046ed122a> in <module>()
----> 1 smoker_and_wt

NameError: name 'smoker_and_wt' is not defined

Let’s compare the number of smokers to non-smokers.

In [62]: smoker_and_wt.select('m_smoker').hist(bins = [0, 1, 2]);

_build/latex/_images/m_smoker.png

We can also compare the distribution of birthweights between smokers and non-smokers.

Non smokers
We do this by grabbing the rows that correspond to mothers that don't
smoke, then plotting a histogram of just the birthweights.
In [63]: smoker_and_wt.where('m_smoker', 0).select('birthwt').hist()

NameError Traceback (most recent call last)
<ipython-input-63-ac023d72d786> in <module>()
----> 1 smoker_and_wt.where('m_smoker', 0).select('birthwt').hist()

NameError: name 'smoker_and_wt' is not defined

Smokers
In [64]: smoker_and_wt.where('m_smoker', 1).select('birthwt').hist()

NameError Traceback (most recent call last)
<ipython-input-64-14a160d7b1d6> in <module>()
----> 1 smoker_and_wt.where('m_smoker', 1).select('birthwt').hist()

NameError: name 'smoker_and_wt' is not defined

16 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

_build/latex/_images/not_m_smoker_weights.png

_build/latex/_images/m_smoker_weights.png

What’s the difference in mean birth weight of the two categories?

In [65]: nonsmoking_mean = smoker_and_wt.where('m_smoker', 0).column('birthwt').mean()

NameError Traceback (most recent call last)

1.7. An Example 17

datascience Documentation, Release 0.7.1

<ipython-input-65-f41eeafe6bd7> in <module>()
----> 1 nonsmoking_mean = smoker_and_wt.where('m_smoker', 0).column('birthwt').mean()

NameError: name 'smoker_and_wt' is not defined

In [66]: smoking_mean = smoker_and_wt.where('m_smoker', 1).column('birthwt').mean()
\\---
NameError Traceback (most recent call last)
<ipython-input-66-025a08c0d2c6> in <module>()
----> 1 smoking_mean = smoker_and_wt.where('m_smoker', 1).column('birthwt').mean()

NameError: name 'smoker_and_wt' is not defined

In [67]: observed_diff = nonsmoking_mean - smoking_mean
\\\---
NameError Traceback (most recent call last)
<ipython-input-67-1dc0201ce02b> in <module>()
----> 1 observed_diff = nonsmoking_mean - smoking_mean

NameError: name 'nonsmoking_mean' is not defined

In [68]: observed_diff
\\---
NameError Traceback (most recent call last)
<ipython-input-68-dbee69efdaa6> in <module>()
----> 1 observed_diff

NameError: name 'observed_diff' is not defined

Let’s do the bootstrap test on the two categories.

In [69]: num_nonsmokers = smoker_and_wt.where('m_smoker', 0).num_rows

NameError Traceback (most recent call last)
<ipython-input-69-66887dbcfe42> in <module>()
----> 1 num_nonsmokers = smoker_and_wt.where('m_smoker', 0).num_rows

NameError: name 'smoker_and_wt' is not defined

In [70]: def bootstrap_once():
....: """
....: Computes one bootstrapped difference in means.
....: The table.sample method lets us take random samples.
....: We then split according to the number of nonsmokers in the original sample.
....: """
....: resample = smoker_and_wt.sample(with_replacement = True)
....: bootstrap_diff = resample.column('birthwt')[:num_nonsmokers].mean() - \
....: resample.column('birthwt')[num_nonsmokers:].mean()
....: return bootstrap_diff
....:

In [71]: repetitions = 1000

In [72]: bootstrapped_diff_means = np.array(
....: [bootstrap_once() for _ in range(repetitions)])
....:

NameError Traceback (most recent call last)

18 Chapter 1. Start Here: datascience Tutorial

datascience Documentation, Release 0.7.1

<ipython-input-72-167c9ef03394> in <module>()
1 bootstrapped_diff_means = np.array(

----> 2 [bootstrap_once() for _ in range(repetitions)])

<ipython-input-72-167c9ef03394> in <listcomp>(.0)
1 bootstrapped_diff_means = np.array(

----> 2 [bootstrap_once() for _ in range(repetitions)])

<ipython-input-70-0af534563c70> in bootstrap_once()
5 We then split according to the number of nonsmokers in the original sample.
6 """

----> 7 resample = smoker_and_wt.sample(with_replacement = True)
8 bootstrap_diff = resample.column('birthwt')[:num_nonsmokers].mean() - resample.column('birthwt')[num_nonsmokers:].mean()
9 return bootstrap_diff

NameError: name 'smoker_and_wt' is not defined

In [73]: bootstrapped_diff_means[:10]
\\---
NameError Traceback (most recent call last)
<ipython-input-73-7ce34a8f5ddf> in <module>()
----> 1 bootstrapped_diff_means[:10]

NameError: name 'bootstrapped_diff_means' is not defined

In [74]: num_diffs_greater = (abs(bootstrapped_diff_means) > abs(observed_diff)).sum()
\\\---
NameError Traceback (most recent call last)
<ipython-input-74-fea00db6f1ce> in <module>()
----> 1 num_diffs_greater = (abs(bootstrapped_diff_means) > abs(observed_diff)).sum()

NameError: name 'bootstrapped_diff_means' is not defined

In [75]: p_value = num_diffs_greater / len(bootstrapped_diff_means)
\\\---
NameError Traceback (most recent call last)
<ipython-input-75-053c4de37c34> in <module>()
----> 1 p_value = num_diffs_greater / len(bootstrapped_diff_means)

NameError: name 'num_diffs_greater' is not defined

In [76]: p_value
\\---
NameError Traceback (most recent call last)
<ipython-input-76-1336a4a7d880> in <module>()
----> 1 p_value

NameError: name 'p_value' is not defined

1.8 Drawing Maps

To come.

1.8. Drawing Maps 19

datascience Documentation, Release 0.7.1

20 Chapter 1. Start Here: datascience Tutorial

CHAPTER 2

Reference

2.1 Tables (datascience.tables)

Summary of methods for Table. Click a method to see its documentation.

One note about reading the method signatures for this page: each method is listed with its arguments. However,
optional arguments are specified in brackets. That is, a method that’s documented like

Table.foo (first_arg, second_arg[, some_other_arg, fourth_arg])

means that the Table.foo method must be called with first_arg and second_arg and optionally some_other_arg and
fourth_arg. That means the following are valid ways to call Table.foo:

some_table.foo(1, 2)
some_table.foo(1, 2, 'hello')
some_table.foo(1, 2, 'hello', 'world')
some_table.foo(1, 2, some_other_arg='hello')

But these are not valid:

some_table.foo(1) # Missing arg
some_table.foo(1, 2[, 'hi']) # SyntaxError
some_table.foo(1, 2[, 'hello', 'world']) # SyntaxError

If that syntax is confusing, you can click the method name itself to get to the details page for that method. That page
will have a more straightforward syntax.

At the time of this writing, most methods only have one or two sentences of documentation, so what you see here is
all that you’ll get for the time being. We are actively working on documentation, prioritizing the most complicated
methods (mostly visualizations).

Creation

Table.__init__([labels, _deprecated, formatter]) Create an empty table with column labels.
Table.from_records(records) Create a table from a sequence of records (dicts with fixed keys).
Table.read_table(filepath_or_buffer, *args, ...) Read a table from a file or web address.
Table.from_df(df) Convert a Pandas DataFrame into a Table.
Table.from_array(arr) Convert a structured NumPy array into a Table.

21

datascience Documentation, Release 0.7.1

2.1.1 datascience.tables.Table.__init__

Table.__init__(labels=None, _deprecated=None, *, formatter=<datascience.formats.Formatter ob-
ject>)

Create an empty table with column labels.

>>> tiles = Table(['letter', 'count', 'points'])
>>> tiles
letter | count | points

Args: labels (list of strings): The column labels.

formatter (Formatter): An instance of Formatter that formats the columns’ values.

2.1.2 datascience.tables.Table.from_records

classmethod Table.from_records(records)
Create a table from a sequence of records (dicts with fixed keys).

2.1.3 datascience.tables.Table.read_table

classmethod Table.read_table(filepath_or_buffer, *args, **vargs)
Read a table from a file or web address.

filepath_or_buffer – string or file handle / StringIO; The string could be a URL. Valid URL schemes in-
clude http, ftp, s3, and file.

2.1.4 datascience.tables.Table.from_df

classmethod Table.from_df(df)
Convert a Pandas DataFrame into a Table.

2.1.5 datascience.tables.Table.from_array

classmethod Table.from_array(arr)
Convert a structured NumPy array into a Table.

Extension (does not modify original table)

Table.with_column(label, values) Return a table with an additional or replaced column.
Table.with_columns(*labels_and_values) Return a table with additional or replaced columns.
Table.with_row(row) Return a table with an additional row.
Table.with_rows(rows) Return a table with additional rows.
Table.relabeled(label, new_label) Returns a table with label changed to new_label.

2.1.6 datascience.tables.Table.with_column

Table.with_column(label, values)
Return a table with an additional or replaced column.

Args:

22 Chapter 2. Reference

datascience Documentation, Release 0.7.1

label (str): The column label. If an existing label is used, that column will be replaced in the re-
turned table.

values (single value or sequence): If a single value, every value in the new column is values.

If a sequence, the new column contains the values in values. values must be the same length as
the table.

Raises:

ValueError: If

• label is not a valid column name

• values is a list/array and does not have the same length as the number of rows in the table.

>>> tiles = Table().with_columns([
... 'letter', ['c', 'd'],
... 'count', [2, 4],
...])
>>> tiles.with_column('points', [3, 2])
letter | count | points
c | 2 | 3
d | 4 | 2
>>> tiles.with_column('count', 1)
letter | count
c | 1
d | 1

2.1.7 datascience.tables.Table.with_columns

Table.with_columns(*labels_and_values)
Return a table with additional or replaced columns.

Args:

labels_and_values: An alternating list of labels and values or a list of label-values pairs.

>>> Table().with_columns([
... 'letter', ['c', 'd'],
... 'count', [2, 4],
...])
letter | count
c | 2
d | 4
>>> Table().with_columns(
... 'letter', ['c', 'd'],
... 'count', [2, 4],
...)
letter | count
c | 2
d | 4
>>> Table().with_columns([
... ['letter', ['c', 'd']],
... ['count', [2, 4]],
...])
letter | count
c | 2
d | 4
>>> Table().with_columns(

2.1. Tables (datascience.tables) 23

datascience Documentation, Release 0.7.1

... ['letter', ['c', 'd']],

... ['count', [2, 4]],

...)
letter | count
c | 2
d | 4
>>> Table().with_columns([
... ['letter', ['c', 'd']],
...])
letter
c
d
>>> Table().with_columns(
... 'letter', ['c', 'd'],
...)
letter
c
d
>>> Table().with_columns(
... ['letter', ['c', 'd']],
...)
letter
c
d
>>> Table().with_columns({'letter': ['c', 'd']})
letter
c
d

2.1.8 datascience.tables.Table.with_row

Table.with_row(row)
Return a table with an additional row.

Args: row (sequence): A value for each column.

Raises: ValueError: If the row length differs from the column count.

>>> tiles = Table(['letter', 'count', 'points'])
>>> tiles.with_row(['c', 2, 3]).with_row(['d', 4, 2])
letter | count | points
c | 2 | 3
d | 4 | 2

2.1.9 datascience.tables.Table.with_rows

Table.with_rows(rows)
Return a table with additional rows.

Args: rows (sequence of sequences): Each row has a value per column.

If rows is a 2-d array, its shape must be (_, n) for n columns.

Raises: ValueError: If a row length differs from the column count.

>>> tiles = Table(['letter', 'count', 'points'])
>>> tiles.with_rows([['c', 2, 3], ['d', 4, 2]])

24 Chapter 2. Reference

datascience Documentation, Release 0.7.1

letter | count | points
c | 2 | 3
d | 4 | 2

2.1.10 datascience.tables.Table.relabeled

Table.relabeled(label, new_label)
Returns a table with label changed to new_label.

label and new_label may be single values or lists specifying column labels to be changed and their new
corresponding labels.

Args:

label (str or sequence of str): The label(s) of columns to be changed.

new_label (str or sequence of str): The new label(s) of columns to be changed. Same number of el-
ements as label.

>>> tiles = Table(['letter', 'count'])
>>> tiles = tiles.with_rows([['c', 2], ['d', 4]])
>>> tiles.relabeled('count', 'number')
letter | number
c | 2
d | 4

Accessing values

Table.num_columns Number of columns.
Table.columns
Table.column(index_or_label) Return the values of a column as an array.
Table.num_rows Number of rows.
Table.rows Return a view of all rows.
Table.row(index) Return a row.
Table.labels Return a tuple of column labels.
Table.column_index(column_label) Return the index of a column.
Table.apply(fn[, column_label]) Returns an array where fn is applied to each set of elements by row from the specified columns in column_label.

2.1.11 datascience.tables.Table.num_columns

Table.num_columns
Number of columns.

2.1.12 datascience.tables.Table.columns

Table.columns

2.1.13 datascience.tables.Table.column

Table.column(index_or_label)
Return the values of a column as an array.

table.column(label) is equivalent to table[label].

2.1. Tables (datascience.tables) 25

datascience Documentation, Release 0.7.1

>>> tiles = Table().with_columns([
... 'letter', ['c', 'd'],
... 'count', [2, 4],
...])
>>> list(tiles.column('letter'))
['c', 'd']
>>> tiles.column(1)
array([2, 4])

Args: label (int or str): The index or label of a column

Returns: An instance of numpy.array.

2.1.14 datascience.tables.Table.num_rows

Table.num_rows
Number of rows.

2.1.15 datascience.tables.Table.rows

Table.rows
Return a view of all rows.

2.1.16 datascience.tables.Table.row

Table.row(index)
Return a row.

2.1.17 datascience.tables.Table.labels

Table.labels
Return a tuple of column labels.

2.1.18 datascience.tables.Table.column_index

Table.column_index(column_label)
Return the index of a column.

2.1.19 datascience.tables.Table.apply

Table.apply(fn, column_label=None)
Returns an array where fn is applied to each set of elements by row from the specified columns in
column_label. If no column_label is specified, then each row is passed to fn.

Args:

fn (function): The function to be applied to elements specified by column_label.

column_label (single string or list of strings): Names of columns to be passed into function fn.
Length must match number of elements fn takes.

26 Chapter 2. Reference

datascience Documentation, Release 0.7.1

Raises:

ValueError: column name in column_label is not an existing column in the table.

Returns: A numpy array consisting of results of applying fn to elements specified by column_label in
each row.

>>> t = Table().with_columns([
... 'letter', ['a', 'b', 'c', 'z'],
... 'count', [9, 3, 3, 1],
... 'points', [1, 2, 2, 10]])
>>> t
letter | count | points
a | 9 | 1
b | 3 | 2
c | 3 | 2
z | 1 | 10
>>> t.apply(lambda x: x - 1, 'points')
array([0, 1, 1, 9])
>>> t.apply(lambda x, y: x * y, ['count', 'points'])
array([9, 6, 6, 10])

Whole rows are passed to the function if no columns are specified.

>>> t.apply(lambda row: row.item('count') * 2)
array([18, 6, 6, 2])

Mutation (modifies table in place)

Table.set_format(column_label_or_labels, ...) Set the format of a column.
Table.move_to_start(column_label) Move a column to the first in order.
Table.move_to_end(column_label) Move a column to the last in order.
Table.append(row_or_table) Append a row or all rows of a table.
Table.append_column(label, values) Appends a column to the table or replaces a column.
Table.relabel(column_label, new_label) Change the labels of columns specified by column_label to labels in new_label.

2.1.20 datascience.tables.Table.set_format

Table.set_format(column_label_or_labels, formatter)
Set the format of a column.

2.1.21 datascience.tables.Table.move_to_start

Table.move_to_start(column_label)
Move a column to the first in order.

2.1.22 datascience.tables.Table.move_to_end

Table.move_to_end(column_label)
Move a column to the last in order.

2.1. Tables (datascience.tables) 27

datascience Documentation, Release 0.7.1

2.1.23 datascience.tables.Table.append

Table.append(row_or_table)
Append a row or all rows of a table. An appended table must have all columns of self.

2.1.24 datascience.tables.Table.append_column

Table.append_column(label, values)
Appends a column to the table or replaces a column.

__setitem__ is aliased to this method: table.append_column(’new_col’, [1, 2, 3]) is
equivalent to table[’new_col’] = [1, 2, 3].

Args: label (str): The label of the new column.

values (single value or list/array): If a single value, every value in the new column is values.

If a list or array, the new column contains the values in values, which must be the same length as
the table.

Returns: Original table with new or replaced column

Raises:

ValueError: If

• label is not a string.

• values is a list/array and does not have the same length as the number of rows in the table.

>>> table = Table().with_columns([
... 'letter', ['a', 'b', 'c', 'z'],
... 'count', [9, 3, 3, 1],
... 'points', [1, 2, 2, 10]])
>>> table
letter | count | points
a | 9 | 1
b | 3 | 2
c | 3 | 2
z | 1 | 10
>>> table.append_column('new_col1', [10, 20, 30, 40])
>>> table
letter | count | points | new_col1
a | 9 | 1 | 10
b | 3 | 2 | 20
c | 3 | 2 | 30
z | 1 | 10 | 40
>>> table.append_column('new_col2', 'hello')
>>> table
letter | count | points | new_col1 | new_col2
a | 9 | 1 | 10 | hello
b | 3 | 2 | 20 | hello
c | 3 | 2 | 30 | hello
z | 1 | 10 | 40 | hello
>>> table.append_column(123, [1, 2, 3, 4])
Traceback (most recent call last):

...
ValueError: The column label must be a string, but a int was given
>>> table.append_column('bad_col', [1, 2])
Traceback (most recent call last):

28 Chapter 2. Reference

datascience Documentation, Release 0.7.1

...
ValueError: Column length mismatch. New column does not have the same number of rows as table.

2.1.25 datascience.tables.Table.relabel

Table.relabel(column_label, new_label)
Change the labels of columns specified by column_label to labels in new_label.

Args:

column_label (single str or list/array of str): The label(s) of columns to be changed. Must be str.

new_label (single str or list/array of str): The new label(s) of columns to be changed. Must be str.

Number of elements must match number of elements in column_label.

Returns: Original table with modified labels

>>> table = Table().with_columns([
... 'points', (1, 2, 3),
... 'id', (12345, 123, 5123)])
>>> table.relabel('id', 'yolo')
points | yolo
1 | 12345
2 | 123
3 | 5123
>>> table.relabel(['points', 'yolo'], ['red', 'blue'])
red | blue
1 | 12345
2 | 123
3 | 5123
>>> table.relabel(['red', 'green', 'blue'], ['cyan', 'magenta', 'yellow', 'key'])
Traceback (most recent call last):

...
ValueError: Invalid arguments. column_label and new_label must be of equal length.
>>> table.relabel(['red', 'blue'], ['blue', 'red'])
blue | red
1 | 12345
2 | 123
3 | 5123

Transformation (creates a new table)

Table.copy(*[, shallow]) Return a copy of a Table.
Table.select(*column_label_or_labels) Returns a new Table with only the columns in column_label_or_labels.
Table.drop(*column_label_or_labels) Return a Table with only columns other than selected label or labels.
Table.take() Return a new Table of a sequence of rows taken by number.
Table.exclude() Return a new Table without a sequence of rows excluded by number.
Table.where(column_or_label[, ...]) Return a new Table containing rows where value_or_predicate returns True for values in column_or_label.
Table.sort(column_or_label[, descending, ...]) Return a Table of rows sorted according to the values in a column.
Table.group(column_or_label[, collect]) Group rows by unique values in a column; count or aggregate others.
Table.groups(labels[, collect]) Group rows by multiple columns, count or aggregate others.
Table.pivot(columns, rows[, values, ...]) Generate a table with a column for rows (or a column for each row in rows list) and a column for each unique value in columns.
Table.stack(key[, labels]) Takes k original columns and returns two columns, with col.
Table.join(column_label, other[, other_label]) Generate a table with the columns of self and other, containing rows for all values of a column that appear in both tables.
Table.stats([ops]) Compute statistics for each column and place them in a table.

Continued on next page

2.1. Tables (datascience.tables) 29

datascience Documentation, Release 0.7.1

Table 2.5 – continued from previous page
Table.percentile(p) Returns a new table with one row containing the pth percentile for each column.
Table.sample([k, with_replacement, weights]) Returns a new table where k rows are randomly sampled from the original table.
Table.split(k) Returns a tuple of two tables where the first table contains k rows randomly sampled and the second contains the remaining rows.
Table.bin([select]) Group values by bin and compute counts per bin by column.

2.1.26 datascience.tables.Table.copy

Table.copy(*, shallow=False)
Return a copy of a Table.

2.1.27 datascience.tables.Table.select

Table.select(*column_label_or_labels)
Returns a new Table with only the columns in column_label_or_labels.

Args: column_label_or_labels: Columns to select from the Table as either column labels (str) or
column indices (int).

Returns: An new instance of Table containing only selected columns. The columns of the new Table are
in the order given in column_label_or_labels.

Raises: KeyError if any of column_label_or_labels are not in the table.

>>> flowers = Table().with_columns(
... 'Number of petals', make_array(8, 34, 5),
... 'Name', make_array('lotus', 'sunflower', 'rose'),
... 'Weight', make_array(10, 5, 6)
...)

>>> flowers
Number of petals | Name | Weight
8 | lotus | 10
34 | sunflower | 5
5 | rose | 6

>>> flowers.select('Number of petals', 'Weight')
Number of petals | Weight
8 | 10
34 | 5
5 | 6

>>> flowers # original table unchanged
Number of petals | Name | Weight
8 | lotus | 10
34 | sunflower | 5
5 | rose | 6

>>> flowers.select(0, 2)
Number of petals | Weight
8 | 10
34 | 5
5 | 6

30 Chapter 2. Reference

datascience Documentation, Release 0.7.1

2.1.28 datascience.tables.Table.drop

Table.drop(*column_label_or_labels)
Return a Table with only columns other than selected label or labels.

Args: column_label_or_labels (string or list of strings): The header names or indices of the columns
to be dropped. column_label_or_labelsmust be an existing header name, or a valid column index.

Returns: An instance of Table with given columns removed.

>>> t = Table().with_columns([
... 'burgers', ['cheeseburger', 'hamburger', 'veggie burger'],
... 'prices', [6, 5, 5],
... 'calories', [743, 651, 582]])
>>> t
burgers | prices | calories
cheeseburger | 6 | 743
hamburger | 5 | 651
veggie burger | 5 | 582
>>> t.drop('prices')
burgers | calories
cheeseburger | 743
hamburger | 651
veggie burger | 582
>>> t.drop(['burgers', 'calories'])
prices
6
5
5
>>> t.drop('burgers', 'calories')
prices
6
5
5
>>> t.drop([0, 2])
prices
6
5
5
>>> t.drop(0, 2)
prices
6
5
5
>>> t.drop(1)
burgers | calories
cheeseburger | 743
hamburger | 651
veggie burger | 582

2.1.29 datascience.tables.Table.take

Table.take()
Return a new Table of a sequence of rows taken by number.

Args: row_indices_or_slice (integer or list of integers or slice): The row index, list of row indices or a
slice of row indices to be selected.

2.1. Tables (datascience.tables) 31

datascience Documentation, Release 0.7.1

Returns: A new instance of Table.

>>> t = Table().with_columns([
... 'letter grade', ['A+', 'A', 'A-', 'B+', 'B', 'B-'],
... 'gpa', [4, 4, 3.7, 3.3, 3, 2.7]])
>>> t
letter grade | gpa
A+ | 4
A | 4
A- | 3.7
B+ | 3.3
B | 3
B- | 2.7
>>> t.take(0)
letter grade | gpa
A+ | 4
>>> t.take(5)
letter grade | gpa
B- | 2.7
>>> t.take(-1)
letter grade | gpa
B- | 2.7
>>> t.take([2, 1, 0])
letter grade | gpa
A- | 3.7
A | 4
A+ | 4
>>> t.take([1, 5])
letter grade | gpa
A | 4
B- | 2.7
>>> t.take(range(3))
letter grade | gpa
A+ | 4
A | 4
A- | 3.7

Note that take also supports NumPy-like indexing and slicing:

>>> t.take[:3]
letter grade | gpa
A+ | 4
A | 4
A- | 3.7

>>> t.take[2, 1, 0]
letter grade | gpa
A- | 3.7
A | 4
A+ | 4

2.1.30 datascience.tables.Table.exclude

Table.exclude()
Return a new Table without a sequence of rows excluded by number.

Args:

32 Chapter 2. Reference

datascience Documentation, Release 0.7.1

row_indices_or_slice (integer or list of integers or slice): The row index, list of row indices or
a slice of row indices to be excluded.

Returns: A new instance of Table.

>>> t = Table().with_columns([
... 'letter grade', ['A+', 'A', 'A-', 'B+', 'B', 'B-'],
... 'gpa', [4, 4, 3.7, 3.3, 3, 2.7]])
>>> t
letter grade | gpa
A+ | 4
A | 4
A- | 3.7
B+ | 3.3
B | 3
B- | 2.7
>>> t.exclude(4)
letter grade | gpa
A+ | 4
A | 4
A- | 3.7
B+ | 3.3
B- | 2.7
>>> t.exclude(-1)
letter grade | gpa
A+ | 4
A | 4
A- | 3.7
B+ | 3.3
B | 3
>>> t.exclude([1, 3, 4])
letter grade | gpa
A+ | 4
A- | 3.7
B- | 2.7
>>> t.exclude(range(3))
letter grade | gpa
B+ | 3.3
B | 3
B- | 2.7

Note that exclude also supports NumPy-like indexing and slicing:

>>> t.exclude[:3]
letter grade | gpa
B+ | 3.3
B | 3
B- | 2.7

>>> t.exclude[1, 3, 4]
letter grade | gpa
A+ | 4
A- | 3.7
B- | 2.7

2.1. Tables (datascience.tables) 33

datascience Documentation, Release 0.7.1

2.1.31 datascience.tables.Table.where

Table.where(column_or_label, value_or_predicate=None, other=None)
Return a new Table containing rows where value_or_predicate returns True for values in
column_or_label.

Args: column_or_label: A column of the Table either as a label (str) or an index (int). Can also be
an array of booleans; only the rows where the array value is True are kept.

value_or_predicate: If a function, it is applied to every value in column_or_label. Only the
rows where value_or_predicate returns True are kept. If a single value, only the rows where the
values in column_or_label are equal to value_or_predicate are kept.

other: Optional additional column label for value_or_predicate to make pairwise comparisons.
See the examples below for usage. When other is supplied, value_or_predicatemust be a callable
function.

Returns: If value_or_predicate is a function, returns a new Table containing only the rows where
value_or_predicate(val) is True for the val‘‘s in ‘‘column_or_label.

If value_or_predicate is a value, returns a new Table containing only the rows where the values
in column_or_label are equal to value_or_predicate.

If column_or_label is an array of booleans, returns a new Table containing only the rows where
column_or_label is True.

>>> marbles = Table().with_columns(
... "Color", make_array("Red", "Green", "Blue", "Red", "Green", "Green"),
... "Shape", make_array("Round", "Rectangular", "Rectangular", "Round", "Rectangular", "Round"),
... "Amount", make_array(4, 6, 12, 7, 9, 2),
... "Price", make_array(1.30, 1.20, 2.00, 1.75, 0, 3.00))

>>> marbles
Color | Shape | Amount | Price
Red | Round | 4 | 1.3
Green | Rectangular | 6 | 1.2
Blue | Rectangular | 12 | 2
Red | Round | 7 | 1.75
Green | Rectangular | 9 | 0
Green | Round | 2 | 3

Use a value to select matching rows

>>> marbles.where("Price", 1.3)
Color | Shape | Amount | Price
Red | Round | 4 | 1.3

In general, a higher order predicate function such as the functions in datascience.predicates.are can
be used.

>>> from datascience.predicates import are
>>> # equivalent to previous example
>>> marbles.where("Price", are.equal_to(1.3))
Color | Shape | Amount | Price
Red | Round | 4 | 1.3

>>> marbles.where("Price", are.above(1.5))
Color | Shape | Amount | Price
Blue | Rectangular | 12 | 2

34 Chapter 2. Reference

datascience Documentation, Release 0.7.1

Red | Round | 7 | 1.75
Green | Round | 2 | 3

Use the optional argument other to apply predicates to compare columns.

>>> marbles.where("Price", are.above, "Amount")
Color | Shape | Amount | Price
Green | Round | 2 | 3

>>> marbles.where("Price", are.equal_to, "Amount") # empty table
Color | Shape | Amount | Price

2.1.32 datascience.tables.Table.sort

Table.sort(column_or_label, descending=False, distinct=False)
Return a Table of rows sorted according to the values in a column.

Args: column_or_label: the column whose values are used for sorting.

descending: if True, sorting will be in descending, rather than ascending order.

distinct: if True, repeated values in column_or_label will be omitted.

Returns: An instance of Table containing rows sorted based on the values in column_or_label.

>>> marbles = Table().with_columns([
... "Color", ["Red", "Green", "Blue", "Red", "Green", "Green"],
... "Shape", ["Round", "Rectangular", "Rectangular", "Round", "Rectangular", "Round"],
... "Amount", [4, 6, 12, 7, 9, 2],
... "Price", [1.30, 1.30, 2.00, 1.75, 1.40, 1.00]])
>>> marbles
Color | Shape | Amount | Price
Red | Round | 4 | 1.3
Green | Rectangular | 6 | 1.3
Blue | Rectangular | 12 | 2
Red | Round | 7 | 1.75
Green | Rectangular | 9 | 1.4
Green | Round | 2 | 1
>>> marbles.sort("Amount")
Color | Shape | Amount | Price
Green | Round | 2 | 1
Red | Round | 4 | 1.3
Green | Rectangular | 6 | 1.3
Red | Round | 7 | 1.75
Green | Rectangular | 9 | 1.4
Blue | Rectangular | 12 | 2
>>> marbles.sort("Amount", descending = True)
Color | Shape | Amount | Price
Blue | Rectangular | 12 | 2
Green | Rectangular | 9 | 1.4
Red | Round | 7 | 1.75
Green | Rectangular | 6 | 1.3
Red | Round | 4 | 1.3
Green | Round | 2 | 1
>>> marbles.sort(3) # the Price column
Color | Shape | Amount | Price
Green | Round | 2 | 1
Red | Round | 4 | 1.3

2.1. Tables (datascience.tables) 35

datascience Documentation, Release 0.7.1

Green | Rectangular | 6 | 1.3
Green | Rectangular | 9 | 1.4
Red | Round | 7 | 1.75
Blue | Rectangular | 12 | 2
>>> marbles.sort(3, distinct = True)
Color | Shape | Amount | Price
Green | Round | 2 | 1
Red | Round | 4 | 1.3
Green | Rectangular | 9 | 1.4
Red | Round | 7 | 1.75
Blue | Rectangular | 12 | 2

2.1.33 datascience.tables.Table.group

Table.group(column_or_label, collect=None)
Group rows by unique values in a column; count or aggregate others.

Args: column_or_label: values to group (column label or index, or array)

collect: a function applied to values in other columns for each group

Returns: A Table with each row corresponding to a unique value in column_or_label, where the first
column contains the unique values from column_or_label, and the second contains counts for each of
the unique values. If collect is provided, a Table is returned with all original columns, each containing
values calculated by first grouping rows according to column_or_label, then applying collect to
each set of grouped values in the other columns.

Note: The grouped column will appear first in the result table. If collect does not accept arguments with
one of the column types, that column will be empty in the resulting table.

>>> marbles = Table().with_columns([
... "Color", ["Red", "Green", "Blue", "Red", "Green", "Green"],
... "Shape", ["Round", "Rectangular", "Rectangular", "Round", "Rectangular", "Round"],
... "Amount", [4, 6, 12, 7, 9, 2],
... "Price", [1.30, 1.30, 2.00, 1.75, 1.40, 1.00]])
>>> marbles
Color | Shape | Amount | Price
Red | Round | 4 | 1.3
Green | Rectangular | 6 | 1.3
Blue | Rectangular | 12 | 2
Red | Round | 7 | 1.75
Green | Rectangular | 9 | 1.4
Green | Round | 2 | 1
>>> marbles.group("Color") # just gives counts
Color | count
Blue | 1
Green | 3
Red | 2
>>> marbles.group("Color", max) # takes the max of each grouping, in each column
Color | Shape max | Amount max | Price max
Blue | Rectangular | 12 | 2
Green | Round | 9 | 1.4
Red | Round | 7 | 1.75
>>> marbles.group("Shape", sum) # sum doesn't make sense for strings
Shape | Color sum | Amount sum | Price sum
Rectangular | | 27 | 4.7
Round | | 13 | 4.05

36 Chapter 2. Reference

datascience Documentation, Release 0.7.1

2.1.34 datascience.tables.Table.groups

Table.groups(labels, collect=None)
Group rows by multiple columns, count or aggregate others.

Args: labels: list of column names (or indices) to group on

collect: a function applied to values in other columns for each group

Returns: A Table with each row corresponding to a unique combination of values in the columns speci-
fied in labels, where the first columns are those specified in labels, followed by a column of counts
for each of the unique values. If collect is provided, a Table is returned with all original columns, each
containing values calculated by first grouping rows according to to values in the labels column, then
applying collect to each set of grouped values in the other columns.

Note: The grouped columns will appear first in the result table. If collect does not accept arguments with
one of the column types, that column will be empty in the resulting table.

>>> marbles = Table().with_columns([
... "Color", ["Red", "Green", "Blue", "Red", "Green", "Green"],
... "Shape", ["Round", "Rectangular", "Rectangular", "Round", "Rectangular", "Round"],
... "Amount", [4, 6, 12, 7, 9, 2],
... "Price", [1.30, 1.30, 2.00, 1.75, 1.40, 1.00]])
>>> marbles
Color | Shape | Amount | Price
Red | Round | 4 | 1.3
Green | Rectangular | 6 | 1.3
Blue | Rectangular | 12 | 2
Red | Round | 7 | 1.75
Green | Rectangular | 9 | 1.4
Green | Round | 2 | 1
>>> marbles.groups(["Color", "Shape"])
Color | Shape | count
Blue | Rectangular | 1
Green | Rectangular | 2
Green | Round | 1
Red | Round | 2
>>> marbles.groups(["Color", "Shape"], sum)
Color | Shape | Amount sum | Price sum
Blue | Rectangular | 12 | 2
Green | Rectangular | 15 | 2.7
Green | Round | 2 | 1
Red | Round | 11 | 3.05

2.1.35 datascience.tables.Table.pivot

Table.pivot(columns, rows, values=None, collect=None, zero=None)
Generate a table with a column for rows (or a column for each row in rows list) and a column for each unique
value in columns. Each row counts/aggregates the values that match both row and column.

columns – column label in self rows – column label or a list of column labels values – column label in self
(or None to produce counts) collect – aggregation function over values zero – zero value for non-existent row-
column combinations

2.1. Tables (datascience.tables) 37

datascience Documentation, Release 0.7.1

2.1.36 datascience.tables.Table.stack

Table.stack(key, labels=None)
Takes k original columns and returns two columns, with col. 1 of all column names and col. 2 of all associated
data.

2.1.37 datascience.tables.Table.join

Table.join(column_label, other, other_label=None)
Generate a table with the columns of self and other, containing rows for all values of a column that appear in
both tables. If a join value appears more than once in self, each row will be used, but in the other table, only the
first of each will be used.

If the result is empty, return None.

2.1.38 datascience.tables.Table.stats

Table.stats(ops=(<built-in function min>, <built-in function max>, <function median at
0x7f69469ec1e0>, <built-in function sum>))

Compute statistics for each column and place them in a table.

2.1.39 datascience.tables.Table.percentile

Table.percentile(p)
Returns a new table with one row containing the pth percentile for each column.

Assumes that each column only contains one type of value.

Returns a new table with one row and the same column labels. The row contains the pth percentile of the original
column, where the pth percentile of a column is the smallest value that at at least as large as the p% of numbers
in the column.

>>> table = Table().with_columns([
... 'count', [9, 3, 3, 1],
... 'points', [1, 2, 2, 10]])
>>> table
count | points
9 | 1
3 | 2
3 | 2
1 | 10
>>> table.percentile(80)
count | points
9 | 10

2.1.40 datascience.tables.Table.sample

Table.sample(k=None, with_replacement=False, weights=None)
Returns a new table where k rows are randomly sampled from the original table.

Kwargs:

k (int or None): If None (default), all the rows in the table are sampled. If an integer, k rows from the
original table are sampled.

38 Chapter 2. Reference

datascience Documentation, Release 0.7.1

with_replacement (bool): If False (default), samples the rows without replacement. If True, samples
the rows with replacement.

weights (list/array or None): If None (default), samples the rows using a uniform random distribution.
If a list/array is passed in, it must be the same length as the number of rows in the table and the values
must sum to 1. The rows will then be sampled according the the probability distribution in weights.

Returns: A new instance of Table.

>>> jobs = Table().with_columns([
... 'job', ['a', 'b', 'c', 'd'],
... 'wage', [10, 20, 15, 8]])
>>> jobs
job | wage
a | 10
b | 20
c | 15
d | 8
>>> jobs.sample()
job | wage
b | 20
c | 15
a | 10
d | 8
>>> jobs.sample(k = 2)
job | wage
b | 20
c | 15
>>> jobs.sample(k = 2, with_replacement = True,
... weights = [0.5, 0.5, 0, 0])
job | wage
a | 10
a | 10

2.1.41 datascience.tables.Table.split

Table.split(k)
Returns a tuple of two tables where the first table contains k rows randomly sampled and the second contains
the remaining rows.

Args:

k (int): The number of rows randomly sampled into the first table. k must be between 1 and
num_rows - 1.

Raises: ValueError: k is not between 1 and num_rows - 1.

Returns: A tuple containing two instances of Table.

>>> jobs = Table().with_columns([
... 'job', ['a', 'b', 'c', 'd'],
... 'wage', [10, 20, 15, 8]])
>>> jobs
job | wage
a | 10
b | 20
c | 15
d | 8
>>> sample, rest = jobs.split(3)

2.1. Tables (datascience.tables) 39

datascience Documentation, Release 0.7.1

>>> sample
job | wage
c | 15
a | 10
b | 20
>>> rest
job | wage
d | 8

2.1.42 datascience.tables.Table.bin

Table.bin(select=None, **vargs)
Group values by bin and compute counts per bin by column.

By default, bins are chosen to contain all values in all columns. The following named arguments from
numpy.histogram can be applied to specialize bin widths:

If the original table has n columns, the resulting binned table has n+1 columns, where column 0 contains the
lower bound of each bin.

Args:

select (columns): Columns to be binned. If None, all columns are binned.

bins (int or sequence of scalars): If bins is an int, it defines the number of equal-width bins in the
given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost
edge, allowing for non-uniform bin widths.

range ((float, float)): The lower and upper range of the bins. If not provided, range contains all val-
ues in the table. Values outside the range are ignored.

density (bool): If False, the result will contain the number of samples in each bin. If True, the re-
sult is the value of the probability density function at the bin, normalized such that the integral over
the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability mass function.

Exporting / Displaying

Table.show([max_rows]) Display the table.
Table.as_text([max_rows, sep]) Format table as text.
Table.as_html([max_rows]) Format table as HTML.
Table.index_by(column_or_label) Return a dict keyed by values in a column that contains lists of rows corresponding to each value.
Table.to_array() Convert the table to a structured NumPy array.
Table.to_df() Convert the table to a Pandas DataFrame.
Table.to_csv(filename) Creates a CSV file with the provided filename.

2.1.43 datascience.tables.Table.show

Table.show(max_rows=0)
Display the table.

2.1.44 datascience.tables.Table.as_text

Table.as_text(max_rows=0, sep=’ | ‘)
Format table as text.

40 Chapter 2. Reference

datascience Documentation, Release 0.7.1

2.1.45 datascience.tables.Table.as_html

Table.as_html(max_rows=0)
Format table as HTML.

2.1.46 datascience.tables.Table.index_by

Table.index_by(column_or_label)
Return a dict keyed by values in a column that contains lists of rows corresponding to each value.

2.1.47 datascience.tables.Table.to_array

Table.to_array()
Convert the table to a structured NumPy array.

2.1.48 datascience.tables.Table.to_df

Table.to_df()
Convert the table to a Pandas DataFrame.

2.1.49 datascience.tables.Table.to_csv

Table.to_csv(filename)
Creates a CSV file with the provided filename.

The CSV is created in such a way that if we run table.to_csv(’my_table.csv’) we can recreate the
same table with Table.read_table(’my_table.csv’).

Args: filename (str): The filename of the output CSV file.

Returns: None, outputs a file with name filename.

>>> jobs = Table().with_columns([
... 'job', ['a', 'b', 'c', 'd'],
... 'wage', [10, 20, 15, 8]])
>>> jobs
job | wage
a | 10
b | 20
c | 15
d | 8
>>> jobs.to_csv('my_table.csv')
<outputs a file called my_table.csv in the current directory>

Visualizations

Table.plot([column_for_xticks, select, overlay]) Plot line charts for the table.
Table.bar([column_for_categories, select, ...]) Plot bar charts for the table.
Table.barh([column_for_categories, select, ...]) Plot horizontal bar charts for the table.
Table.pivot_hist(pivot_column_label, ...[, ...]) Draw histograms of each category in a column.
Table.hist([select, overlay, bins, counts, unit]) Plots one histogram for each column in the table.
Table.points(column__lat, column__long[, ...]) Draw points from latitude and longitude columns.

Continued on next page

2.1. Tables (datascience.tables) 41

datascience Documentation, Release 0.7.1

Table 2.7 – continued from previous page
Table.scatter(column_for_x[, select, ...]) Creates scatterplots, optionally adding a line of best fit.
Table.boxplot(**vargs) Plots a boxplot for the table.

2.1.50 datascience.tables.Table.plot

Table.plot(column_for_xticks=None, select=None, overlay=True, **vargs)
Plot line charts for the table.

Each plot is labeled using the values in column_for_xticks and one plot is produced for every other column (or
for the columns designated by select).

Every selected column except for column_for_xticks must be numerical.

Args: column_for_xticks (str/array): A column containing x-axis labels

Kwargs:

overlay (bool): create a chart with one color per data column; if False, each will be displayed sepa-
rately.

vargs: Additional arguments that get passed into plt.plot. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
for additional arguments that can be passed into vargs.

2.1.51 datascience.tables.Table.bar

Table.bar(column_for_categories=None, select=None, overlay=True, **vargs)
Plot bar charts for the table.

Each plot is labeled using the values in column_for_categories and one plot is produced for every other column
(or for the columns designated by select).

Every selected except column for column_for_categories must be numerical.

Args: column_for_categories (str): A column containing x-axis categories

Kwargs:

overlay (bool): create a chart with one color per data column; if False, each will be displayed sepa-
rately.

vargs: Additional arguments that get passed into plt.bar. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar
for additional arguments that can be passed into vargs.

2.1.52 datascience.tables.Table.barh

Table.barh(column_for_categories=None, select=None, overlay=True, **vargs)
Plot horizontal bar charts for the table.

Each plot is labeled using the values in column_for_categories and one plot is produced for every other column
(or for the columns designated by select).

Every selected except column for column_for_categories must be numerical.

Args: column_for_categories (str): A column containing y-axis categories

Kwargs:

overlay (bool): create a chart with one color per data column; if False, each will be displayed sepa-
rately.

42 Chapter 2. Reference

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.bar

datascience Documentation, Release 0.7.1

vargs: Additional arguments that get passed into plt.barh. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.barh
for additional arguments that can be passed into vargs.

>>> t = Table().with_columns([
... 'Furniture', ['chairs', 'tables', 'desks'],
... 'Count', [6, 1, 2],
... 'Price', [10, 20, 30]
...])
>>> t
Furniture | Count | Price
chairs | 6 | 10
tables | 1 | 20
desks | 2 | 30
>>> furniture_table.barh('Furniture')
<bar graph with furniture as categories and bars for count and price>
>>> furniture_table.barh('Furniture', 'Price')
<bar graph with furniture as categories and bars for price>
>>> furniture_table.barh('Furniture', [1, 2])
<bar graph with furniture as categories and bars for count and price>

2.1.53 datascience.tables.Table.pivot_hist

Table.pivot_hist(pivot_column_label, value_column_label, overlay=True, **vargs)
Draw histograms of each category in a column.

2.1.54 datascience.tables.Table.hist

Table.hist(select=None, overlay=True, bins=None, counts=None, unit=None, **vargs)
Plots one histogram for each column in the table.

Every column must be numerical.

Kwargs:

overlay (bool): If True, plots 1 chart with all the histograms overlaid on top of each other (instead of
the default behavior of one histogram for each column in the table). Also adds a legend that matches
each bar color to its column.

bins (column name or list): Lower bound for each bin in the histogram. If None, bins will be chosen
automatically.

counts (column name or column): A column of counted values. All other columns are treated as
counts of these values. If None, each value in each row is assigned a count of 1.

vargs: Additional arguments that get passed into :func:plt.hist. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist
for additional arguments that can be passed into vargs. These include: range, normed, cumulative,
and orientation, to name a few.

>>> t = Table().with_columns([
... 'count', [9, 3, 3, 1],
... 'points', [1, 2, 2, 10]])
>>> t
count | points
9 | 1
3 | 2
3 | 2
1 | 10
>>> t.hist()

2.1. Tables (datascience.tables) 43

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.barh
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.hist

datascience Documentation, Release 0.7.1

<histogram of values in count>
<histogram of values in points>

>>> t = Table().with_columns([
... 'value', [101, 102, 103],
... 'proportion', [0.25, 0.5, 0.25]])
>>> t.hist(counts='value')
<histogram of values in prop weighted by corresponding values in value>

2.1.55 datascience.tables.Table.points

Table.points(column__lat, column__long, labels=None, colors=None, **kwargs)
Draw points from latitude and longitude columns. [Deprecated]

2.1.56 datascience.tables.Table.scatter

Table.scatter(column_for_x, select=None, overlay=True, fit_line=False, colors=None, labels=None,
**vargs)

Creates scatterplots, optionally adding a line of best fit.

Each plot uses the values in column_for_x for horizontal positions. One plot is produced for every other column
as y (or for the columns designated by select).

Every selected except column for column_for_categories must be numerical.

Args:

column_for_x (str): The name to use for the x-axis values of the scatter plots.

Kwargs:

overlay (bool): create a chart with one color per data column; if False, each will be displayed sep-
arately.

fit_line (bool): draw a line of best fit for each set of points

vargs: Additional arguments that get passed into plt.scatter. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter
for additional arguments that can be passed into vargs. These include: marker and norm, to name a
couple.

colors: A column of colors (labels or numeric values)

labels: A column of text labels to annotate dots

>>> table = Table().with_columns([
... 'x', [9, 3, 3, 1],
... 'y', [1, 2, 2, 10],
... 'z', [3, 4, 5, 6]])
>>> table
x | y | z
9 | 1 | 3
3 | 2 | 4
3 | 2 | 5
1 | 10 | 6
>>> table.scatter('x')
<scatterplot of values in y and z on x>

44 Chapter 2. Reference

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter

datascience Documentation, Release 0.7.1

>>> table.scatter('x', overlay=False)
<scatterplot of values in y on x>
<scatterplot of values in z on x>

>>> table.scatter('x', fit_line=True)
<scatterplot of values in y and z on x with lines of best fit>

2.1.57 datascience.tables.Table.boxplot

Table.boxplot(**vargs)
Plots a boxplot for the table.

Every column must be numerical.

Kwargs:

vargs: Additional arguments that get passed into plt.boxplot. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot
for additional arguments that can be passed into vargs. These include vert and showmeans.

Returns: None

Raises: ValueError: The Table contains columns with non-numerical values.

>>> table = Table().with_columns([
... 'test1', [92.5, 88, 72, 71, 99, 100, 95, 83, 94, 93],
... 'test2', [89, 84, 74, 66, 92, 99, 88, 81, 95, 94]])
>>> table
test1 | test2
92.5 | 89
88 | 84
72 | 74
71 | 66
99 | 92
100 | 99
95 | 88
83 | 81
94 | 95
93 | 94
>>> table.boxplot()
<boxplot of test1 and boxplot of test2 side-by-side on the same figure>

2.2 Maps (datascience.maps)

Draw maps using folium.

class datascience.maps.Map(features=(), ids=(), width=960, height=500, **kwargs)
A map from IDs to features. Keyword args are forwarded to folium.

color(values, ids=(), key_on=’feature.id’, palette=’YlOrBr’, **kwargs)
Color map features by binning values.

values – a sequence of values or a table of keys and values ids – an ID for each value; if none are provided,
indices are used key_on – attribute of each feature to match to ids palette – one of the following color
brewer palettes:

‘BuGn’, ‘BuPu’, ‘GnBu’, ‘OrRd’, ‘PuBu’, ‘PuBuGn’, ‘PuRd’, ‘RdPu’, ‘YlGn’, ‘YlGnBu’,
‘YlOrBr’, and ‘YlOrRd’.

2.2. Maps (datascience.maps) 45

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot

datascience Documentation, Release 0.7.1

Defaults from Folium:

threshold_scale: list, default None Data range for D3 threshold scale. Defaults to the following range of
quantiles: [0, 0.5, 0.75, 0.85, 0.9], rounded to the nearest order-of-magnitude integer. Ex: 270 rounds
to 200, 5600 to 6000.

fill_opacity: float, default 0.6 Area fill opacity, range 0-1.

line_color: string, default ‘black’ GeoJSON geopath line color.

line_weight: int, default 1 GeoJSON geopath line weight.

line_opacity: float, default 1 GeoJSON geopath line opacity, range 0-1.

legend_name: string, default None Title for data legend. If not passed, defaults to columns[1].

features

format(**kwargs)
Apply formatting.

geojson()
Render features as a FeatureCollection.

classmethod read_geojson(path_or_json_or_string)
Read a geoJSON string, object, or file. Return a dict of features keyed by ID.

class datascience.maps.Marker(lat, lon, popup=’‘, color=’blue’, **kwargs)
A marker displayed with Folium’s simple_marker method.

popup – text that pops up when marker is clicked color – fill color

Defaults from Folium:

marker_icon: string, default ‘info-sign’ icon from (http://getbootstrap.com/components/) you want on the
marker

clustered_marker: boolean, default False boolean of whether or not you want the marker clustered with other
markers

icon_angle: int, default 0 angle of icon

popup_width: int, default 300 width of popup

copy()
Return a deep copy

format(**kwargs)
Apply formatting.

geojson(feature_id)
GeoJSON representation of the marker as a point.

lat_lons

classmethod map(latitudes, longitudes, labels=None, colors=None, radii=None, **kwargs)
Return markers from columns of coordinates, labels, & colors.

The radii column is not applicable to markers, but sets circle radius.

classmethod map_table(table, **kwargs)
Return markers from the colums of a table.

class datascience.maps.Circle(lat, lon, popup=’‘, color=’blue’, radius=10, **kwargs)
A marker displayed with Folium’s circle_marker method.

popup – text that pops up when marker is clicked color – fill color radius – pixel radius of the circle

46 Chapter 2. Reference

http://getbootstrap.com/components/

datascience Documentation, Release 0.7.1

Defaults from Folium:

fill_opacity: float, default 0.6 Circle fill opacity

For example, to draw three circles:

t = Table().with_columns([

‘lat’, [37.8, 38, 37.9], ‘lon’, [-122, -122.1, -121.9], ‘label’, [’one’, ‘two’, ‘three’], ‘color’, [’red’,
‘green’, ‘blue’], ‘radius’, [3000, 4000, 5000],

])

Circle.map_table(t)

class datascience.maps.Region(geojson, **kwargs)
A GeoJSON feature displayed with Folium’s geo_json method.

copy()
Return a deep copy

format(**kwargs)
Apply formatting.

geojson(feature_id)
Return GeoJSON with ID substituted.

lat_lons
A flat list of (lat, lon) pairs.

polygons
Return a list of polygons describing the region.

•Each polygon is a list of linear rings, where the first describes the exterior and the rest describe interior
holes.

•Each linear ring is a list of positions where the last is a repeat of the first.

•Each position is a (lat, lon) pair.

properties

type
The GEOJSON type of the regions: Polygon or MultiPolygon.

2.3 Formats (datascience.formats)

String formatting for table entries.

class datascience.formats.Formatter(min_width=None, max_width=None, etc=None)
String formatter that truncates long values.

static convert(value)
Identity conversion (override to convert values).

converts_values
Whether this Formatter also converts values.

etc = ‘ ...’

format_column(label, column)
Return a formatting function that pads & truncates values.

2.3. Formats (datascience.formats) 47

datascience Documentation, Release 0.7.1

static format_value(value)
Pretty-print an arbitrary value.

max_width = 60

min_width = 4

class datascience.formats.NumberFormatter(decimals=2, decimal_point=’.’, separator=’, ‘)
Format numbers that may have delimiters.

convert(value)
Convert string 93,000.00 to float 93000.0.

converts_values = True

format_value(value)

class datascience.formats.CurrencyFormatter(symbol=’$’, *args, **vargs)
Format currency and convert to float.

convert(value)
Convert value to float. If value is a string, ensure that the first character is the same as symbol ie. the value
is in the currency this formatter is representing.

converts_values = True

format_value(value)
Format currency.

class datascience.formats.DateFormatter(format=’%Y-%m-%d %H:%M:%S.%f’, *args,
**vargs)

Format date & time and convert to UNIX timestamp.

convert(value)
Convert 2015-08-03 to a Unix timestamp int.

converts_values = True

format_value(value)
Format timestamp as a string.

class datascience.formats.PercentFormatter(decimals=2, *args, **vargs)
Format a number as a percentage.

converts_values = False

format_value(value)
Format number as percentage.

2.4 Utility Functions (datascience.util)

Utility functions

datascience.util.make_array(*elements)
Returns an array containing all the arguments passed to this function. A simple way to make an array with a few
elements.

As with any array, all arguments should have the same type.

>>> make_array(0)
array([0])
>>> make_array(2, 3, 4)

48 Chapter 2. Reference

datascience Documentation, Release 0.7.1

array([2, 3, 4])
>>> make_array("foo", "bar")
array(['foo', 'bar'],

dtype='<U3')
>>> make_array()
array([], dtype=float64)

datascience.util.percentile(p, arr=None)
Returns the pth percentile of the input array (the value that is at least as great as p% of the values in the array).

If arr is not provided, percentile returns itself curried with p

>>> percentile(74.9, [1, 3, 5, 9])
5
>>> percentile(75, [1, 3, 5, 9])
5
>>> percentile(75.1, [1, 3, 5, 9])
9
>>> f = percentile(75)
>>> f([1, 3, 5, 9])
5

datascience.util.plot_cdf_area(rbound=None, lbound=None, mean=0, sd=1)
Plots a normal curve with specified parameters and area below curve shaded between lbound and rbound.

Args: rbound (numeric): right boundary of shaded region

lbound (numeric): left boundary of shaded region; by default is negative infinity

mean (numeric): mean/expectation of normal distribution

sd (numeric): standard deviation of normal distribution

datascience.util.plot_normal_cdf(rbound=None, lbound=None, mean=0, sd=1)
Plots a normal curve with specified parameters and area below curve shaded between lbound and rbound.

Args: rbound (numeric): right boundary of shaded region

lbound (numeric): left boundary of shaded region; by default is negative infinity

mean (numeric): mean/expectation of normal distribution

sd (numeric): standard deviation of normal distribution

datascience.util.table_apply(table, func, subset=None)
Applies a function to each column and returns a Table.

Uses pandas apply under the hood, then converts back to a Table

Args:

table [instance of Table] The table to apply your function to

func [function] Any function that will work with DataFrame.apply

subset [list | None] A list of columns to apply the function to. If None, function will be applied to all
columns in table

tab [instance of Table] A table with the given function applied. It will either be the shape == shape(table), or
shape (1, table.shape[1])

datascience.util.minimize(f, start=None, smooth=False, log=None, array=False, **vargs)
Minimize a function f of one or more arguments.

2.4. Utility Functions (datascience.util) 49

datascience Documentation, Release 0.7.1

Args: f: A function that takes numbers and returns a number

start: A starting value or list of starting values

smooth: Whether to assume that f is smooth and use first-order info

log: Logging function called on the result of optimization (e.g. print)

vargs: Other named arguments passed to scipy.optimize.minimize

Returns either:

1. the minimizing argument of a one-argument function

2. an array of minimizing arguments of a multi-argument function

50 Chapter 2. Reference

Python Module Index

d
datascience.formats, 47
datascience.maps, 45
datascience.util, 48

51

datascience Documentation, Release 0.7.1

52 Python Module Index

Index

Symbols
__init__() (datascience.tables.Table method), 22

A
append() (datascience.tables.Table method), 28
append_column() (datascience.tables.Table method), 28
apply() (datascience.tables.Table method), 26
as_html() (datascience.tables.Table method), 41
as_text() (datascience.tables.Table method), 40

B
bar() (datascience.tables.Table method), 42
barh() (datascience.tables.Table method), 42
bin() (datascience.tables.Table method), 40
boxplot() (datascience.tables.Table method), 45

C
Circle (class in datascience.maps), 46
color() (datascience.maps.Map method), 45
column() (datascience.tables.Table method), 25
column_index() (datascience.tables.Table method), 26
columns (datascience.tables.Table attribute), 25
convert() (datascience.formats.CurrencyFormatter

method), 48
convert() (datascience.formats.DateFormatter method),

48
convert() (datascience.formats.Formatter static method),

47
convert() (datascience.formats.NumberFormatter

method), 48
converts_values (datascience.formats.CurrencyFormatter

attribute), 48
converts_values (datascience.formats.DateFormatter at-

tribute), 48
converts_values (datascience.formats.Formatter at-

tribute), 47
converts_values (datascience.formats.NumberFormatter

attribute), 48
converts_values (datascience.formats.PercentFormatter

attribute), 48

copy() (datascience.maps.Marker method), 46
copy() (datascience.maps.Region method), 47
copy() (datascience.tables.Table method), 30
CurrencyFormatter (class in datascience.formats), 48

D
datascience.formats (module), 47
datascience.maps (module), 45
datascience.util (module), 48
DateFormatter (class in datascience.formats), 48
drop() (datascience.tables.Table method), 31

E
etc (datascience.formats.Formatter attribute), 47
exclude() (datascience.tables.Table method), 32

F
features (datascience.maps.Map attribute), 46
format() (datascience.maps.Map method), 46
format() (datascience.maps.Marker method), 46
format() (datascience.maps.Region method), 47
format_column() (datascience.formats.Formatter

method), 47
format_value() (datascience.formats.CurrencyFormatter

method), 48
format_value() (datascience.formats.DateFormatter

method), 48
format_value() (datascience.formats.Formatter static

method), 47
format_value() (datascience.formats.NumberFormatter

method), 48
format_value() (datascience.formats.PercentFormatter

method), 48
Formatter (class in datascience.formats), 47
from_array() (datascience.tables.Table class method), 22
from_df() (datascience.tables.Table class method), 22
from_records() (datascience.tables.Table class method),

22

G
geojson() (datascience.maps.Map method), 46

53

datascience Documentation, Release 0.7.1

geojson() (datascience.maps.Marker method), 46
geojson() (datascience.maps.Region method), 47
group() (datascience.tables.Table method), 36
groups() (datascience.tables.Table method), 37

H
hist() (datascience.tables.Table method), 43

I
index_by() (datascience.tables.Table method), 41

J
join() (datascience.tables.Table method), 38

L
labels (datascience.tables.Table attribute), 26
lat_lons (datascience.maps.Marker attribute), 46
lat_lons (datascience.maps.Region attribute), 47

M
make_array() (in module datascience.util), 48
Map (class in datascience.maps), 45
map() (datascience.maps.Marker class method), 46
map_table() (datascience.maps.Marker class method), 46
Marker (class in datascience.maps), 46
max_width (datascience.formats.Formatter attribute), 48
min_width (datascience.formats.Formatter attribute), 48
minimize() (in module datascience.util), 49
move_to_end() (datascience.tables.Table method), 27
move_to_start() (datascience.tables.Table method), 27

N
num_columns (datascience.tables.Table attribute), 25
num_rows (datascience.tables.Table attribute), 26
NumberFormatter (class in datascience.formats), 48

P
PercentFormatter (class in datascience.formats), 48
percentile() (datascience.tables.Table method), 38
percentile() (in module datascience.util), 49
pivot() (datascience.tables.Table method), 37
pivot_hist() (datascience.tables.Table method), 43
plot() (datascience.tables.Table method), 42
plot_cdf_area() (in module datascience.util), 49
plot_normal_cdf() (in module datascience.util), 49
points() (datascience.tables.Table method), 44
polygons (datascience.maps.Region attribute), 47
properties (datascience.maps.Region attribute), 47

R
read_geojson() (datascience.maps.Map class method), 46
read_table() (datascience.tables.Table class method), 22
Region (class in datascience.maps), 47

relabel() (datascience.tables.Table method), 29
relabeled() (datascience.tables.Table method), 25
row() (datascience.tables.Table method), 26
rows (datascience.tables.Table attribute), 26

S
sample() (datascience.tables.Table method), 38
scatter() (datascience.tables.Table method), 44
select() (datascience.tables.Table method), 30
set_format() (datascience.tables.Table method), 27
show() (datascience.tables.Table method), 40
sort() (datascience.tables.Table method), 35
split() (datascience.tables.Table method), 39
stack() (datascience.tables.Table method), 38
stats() (datascience.tables.Table method), 38

T
table_apply() (in module datascience.util), 49
take() (datascience.tables.Table method), 31
to_array() (datascience.tables.Table method), 41
to_csv() (datascience.tables.Table method), 41
to_df() (datascience.tables.Table method), 41
type (datascience.maps.Region attribute), 47

W
where() (datascience.tables.Table method), 34
with_column() (datascience.tables.Table method), 22
with_columns() (datascience.tables.Table method), 23
with_row() (datascience.tables.Table method), 24
with_rows() (datascience.tables.Table method), 24

54 Index

	Start Here: datascience Tutorial
	Getting Started
	Creating a Table
	Accessing Values
	Manipulating Data
	Visualizing Data
	Exporting
	An Example
	Drawing Maps

	Reference
	Tables (datascience.tables)
	Maps (datascience.maps)
	Formats (datascience.formats)
	Utility Functions (datascience.util)

	Python Module Index

